Elimination of Flammable Gas Effects in Cerium Oxide Semiconductor-Type Resistive Oxygen Sensors for Monitoring Low Oxygen Concentrations

نویسندگان

  • Toshio Itoh
  • Noriya Izu
  • Takafumi Akamatsu
  • Woosuck Shin
  • Yusuke Miki
  • Yasuo Hirose
چکیده

We have investigated the catalytic layer in zirconium-doped cerium oxide, Ce0.9Zr0.1O2 (CeZr10) resistive oxygen sensors for reducing the effects of flammable gases, namely hydrogen and carbon monoxide. When the concentration of flammable gases is comparable to that of oxygen, the resistance of CeZr10 is affected by the presence of these gases. We have developed layered thick films, which consist of an oxygen sensor layer (CeZr10), an insulation layer (Al2O3), and a catalytic layer consisting of CeZr10 with 3 wt% added platinum, which was prepared via the screen printing method. The Pt-CeZr10 catalytic layer was found to prevent the detrimental effects of the flammable gases on the resistance of the sensor layer. This effect is due to the catalytic layer promoting the oxidation of hydrogen and carbon monoxide through the consumption of ambient O2 and/or the lattice oxygen atoms of the Pt-CeZr10 catalytic layer.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oxygen sensors: Materials, methods, designs and applications

Advancement of gas sensor technology over the past few decades has led to significant progress in pollution control and thereby, to environmental protection. An excellent example is the control of automobile exhaust emissions, made possible by the use of oxygen gas sensors. Since early 1970’s there have been sustained studies on oxygen sensors and has led to development of sensors for various a...

متن کامل

ساخت و بررسی عمل کرد سنسور اکسیژن و بهبود آن با استفاده از نیمه هادی اکسید فلزات تیتانیوم و سزیم و قلع به عنوان مرجع‌های جامد

We report the development of different types of oxygen sensors based on yittria-stabilized zirconia (YSZ) as a solid electrolyte. The conventional oxygen sensor is a concentration cell with two porous Pt electrodes, one of which is exposed to air as a constant (reference) oxygen concentration and the other is exposed to automobile exhaust gas of variable oxygen concentration, depending on the a...

متن کامل

Aerosol-deposited BaFe0.7Ta0.3O3−δ for nitrogen monoxide and temperature-independent oxygen sensing

The gas sensing properties of resistive gas sensors of BaFe0.7Ta0.3O3−δ (BFT30) prepared by the socalled aerosol deposition method, a method to manufacture dense ceramic films at room temperature, were investigated. The electrical response of the films was investigated first under various oxygen concentrations and in a wide temperature range between 350 and 900 C. Between 700 and 900 C, the con...

متن کامل

Nano-Enriched and Autonomous Sensing Framework for Dissolved Oxygen

This paper investigates a nano-enhanced wireless sensing framework for dissolved oxygen (DO). The system integrates a nanosensor that employs cerium oxide (ceria) nanoparticles to monitor the concentration of DO in aqueous media via optical fluorescence quenching. We propose a comprehensive sensing framework with the nanosensor equipped with a digital interface where the sensor output is digiti...

متن کامل

Thickness Dependence of Sensitivity in Thin Film Tin Oxide Gas Sensors Deposited by Vapor Pyrolysis

Transparent SnO2 thin films were deposited on porcelain substrates using a chemical vapor deposition technique based on the hydrolysis of SnCl4 at elevated temperatures. A reduced pressure self-contained evaporation chamber was designed for the process where the pyrolysis of SnCl4 at the presence of water vapor was carried out. Resistive gas sensors were fabricated by providing ohmic contacts o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2015